Math-1010

$$
\text { Lesson 4-1 }
$$

Factoring Quadratics with Lead Coefficient Not = 1,
Irrational and Complex Conjugates

Simplify Rational Expressions

Factor the quadratic expressions.

$$
3 x^{3}+15 x^{2}-42 x \quad 5 x^{3}-25 x^{2}-20 x
$$

What if there is no common factor AND the lead coefficient is NOT equal to 1 ?

$$
a x^{2}+b x+c
$$

(These come from multiplying binomials that also do not have lead coefficients of 1.)

$$
(2 x+1)(x+3)
$$

Use the "box method" to multiply the binomials

$$
2 x^{2}+7 x+3
$$

	x	3
$2 x$	$2 x^{2}$	$6 x$
1	x	3

Notice a nice pattern when you multiply this out ("simplify")
$(2 x+1)(x+3)$
$2 x^{2}+7 x+3$
"right plus right" does not add up to 7 , but notice something.

$$
2 * 15=30
$$

$$
30=10 * 3
$$

Are there any other factors of 30 that add up to 13 ?
This tells us to break
13 x into $10 \mathrm{x}+3 \mathrm{x}$
$2 x^{2}+13 x+15$
$2 x^{2}+10 x+3 x+15$

These are all of the terms in "the box"

What is the bottom-left term in the box?

$$
x^{*}(3)=3 x
$$

What is the top-right term in the box?

$$
2 x^{*}(5)=10 x
$$

Final check: $3 * 5=15$?
Factored form:

$$
\begin{array}{r}
2 x^{2}+13 x+15 \\
\rightarrow \\
(2 x+3)(x+5)
\end{array}
$$

$4 * 10=40$
These are all of the terms in "the box"

$8+5=13$
Other factors of 40 that add up to 13 ?

	$4 x$	5
x	$4 x^{2}$	$5 x$
2	$8 x$	10

Since $4 x^{2}$ can be factored 2 ways, look for the common factors of the $1^{\text {st }}$ row. ' x ' is the common factor of $4 x^{3}$ and $5 x$

Look for the common factors of the $1^{\text {st }}$ column
' $4 x$ ' is the common factor of $4 x^{3}$ and $8 x$

$$
\begin{gathered}
4 x^{*}(2)=8 x \\
x^{*}(\underline{5})=5 x
\end{gathered}
$$

Final check: $2 * 5=10$?

$$
\rightarrow(x+2)(4 x+5)
$$

These are all of the terms in "the box"

This tells us to break
14 x into
$3 x^{2}+14 x+8$

Factor

$$
5 * 4=
$$

$$
12+\ldots
$$

$5 x^{2}+12 x+4$

$$
\longrightarrow(\quad)
$$

$$
11^{*}(-9)=
$$

$$
=\ldots
$$

$$
\geq+
$$

$$
1+x^{2}+2 x-0
$$

$$
\rightarrow(\quad)
$$

Factor

$$
\begin{aligned}
& 9 * 10= \\
& ==\text { __ }^{*}
\end{aligned}
$$

$$
\begin{array}{cc}
x^{2}-1 & \text { "the difference of two squares" } \\
x^{2}+0 x-1 & \text { Two numbers multiplied }=(-1) \\
(-1)(+1) & \text { and added }=0 \\
(x-1)(x+1) & \text { "conjugate binomial pair" } \\
x^{2}-1 \quad \rightarrow(x-1)(x+1) \\
x^{2}-4 \rightarrow(x-2)(x+2) \\
x^{2}-9 \rightarrow(x-3)(x+3) \\
x^{2}-16 \rightarrow(x-4)(x+4)
\end{array}
$$

$$
x^{2}-1 \rightarrow(x-1)(x+1)
$$

"conjugate binomial pair"
$x^{2}-4 \rightarrow(x-2)(x+2)$
"conjugate binomial pair"
Follows this pattern

$$
\rightarrow\left(\sqrt{x^{2}}-\sqrt{4}\right)\left(\sqrt{x^{2}}+\sqrt{4}\right)
$$

What if the second term is not a "perfect square"?

$$
x^{2}-2 \rightarrow(x-\sqrt{2})(x+\sqrt{2})
$$

"irrational conjugate binomial pair"
$x^{2}-3 \rightarrow(x-\sqrt{3})(x+\sqrt{3})$
"irrational conjugate binomial pair"
"Nice" 3rd Degree Polynomial (with no constant term)

$$
\begin{aligned}
& a x^{3}+b x^{2}+c x+d \\
& 3 x^{3}+12 x^{2}-36 x
\end{aligned}
$$

It has no constant term so it can easily be factored into ' $3 x$ ' times a quadratic factor. $3 x x^{2}+4 x-12$

If the quadratic factor is "nice" we can factor that into 2 binomials.

$$
3 x(x+6)(x-2)
$$

Your turn:

$x^{3}+5 x^{2}+4 x$

Factor out the common factor.

$x\left(x^{2}+5 x+4\right)$
Factor the trinomial
$x(x+4)(x+1)$
$2 x^{3}-10 x^{2}-28 x$
Factor out the common factor.
$2 x\left(x^{2}-5 x-14\right)$
Factor the trinomial
$2 x(x-7)(x+2)$

Another "Nice" 3rd Degree Polynomial

$$
a x^{3}+b x^{2}+c x+d
$$

This has the constant term, but it has a very useful feature:

$$
\begin{aligned}
& 1 x^{3}+2 x^{2}+2 x+4 \\
& 1 x^{3}+2 x^{2}+2 x+4
\end{aligned}
$$

What pattern do you see?

$$
3 r d / 1 s t=2 / 1 \quad 4 t h / 2 n d=4 / 2=2 / 1
$$

If we divide the coefficients of the $1^{\text {st }}$ and $3^{\text {rd }}$ terms, and the coefficient of the $2^{\text {nd }}$ term and the constant, we get the same number.
"factor by grouping" if it has this nice pattern.

$$
1 x^{3}+2 x^{2}+2 x+4
$$

Group the $1^{\text {st }}$ and last pair of terms with parentheses.

$$
\left(1 x^{3}+2 x^{2}\right)+(2 x+4)
$$

Factor out the common term from the first group.

$$
x^{2}(x+2)+(2 x+4)
$$

Factor out the common term from the last group.

$$
x^{2}(x+2)+2(x+2)
$$

Common factor of $(x+2)$

$$
\left.x^{2} x+2\right)+2(x+2)
$$

These two binomials are now common factors of

$$
x^{2} \text { and } 2
$$

Factor out the common binomial term.

$$
(x+2)\left(x^{2}+2\right)
$$

Does if follow the "nice pattern"? If so, "factor by grouping"

$$
2 x^{3}+3 x^{2}+4 x+6
$$

An easier method is "box factoring" (if it has this nice pattern).

$$
1 x^{3}+2 x^{2}+2 x+4
$$

These 4 terms are the numbers in the box.
Find the common factor of the $1^{\text {st }}$ row.
Fill in the rest of the box.
Rewrite as two binomials muliplied

$$
(x+2)\left(x^{2}+2\right)
$$

	x	2
x^{2}	x^{3}	$2 x^{2}$
2	$2 x$	4

Which of the following $3^{\text {rd }}$ degree polynomials have the "nice pattern" we saw on the previous slide?

$$
\begin{aligned}
& 2 x^{3}-3 x^{2}-6 x+9 \quad 3 r d / 1 s t=4 t h / 2 n d=-3 \\
& 4 x^{3}-5 x^{2}+12 x-15 \quad 3^{r d} / 1^{s t}=4^{t h} / 2^{n d}=3 \\
& 4 x^{3}+8 x^{2}+5 x+10 \quad 3^{r d} / 1^{\text {st }}=4^{\text {th }} / 2^{n d}=5 / 4
\end{aligned}
$$

All of them!

Find the zeroes using "box factoring"

$$
4 x^{3}-5 x^{2}+12 x-15
$$

$$
(4 x-5)\left(x^{2}+3\right)
$$

	$4 x$	-5
x^{2}	$4 x^{3}$	$-5 x^{2}$
3	$12 x$	-15

$2 x^{3}-3 x^{2}+8 x-12$
($)(\mathrm{l}$

Imaginary Numbers $\quad x=\sqrt{-1}$

$$
\begin{gathered}
x^{2}=(\sqrt{-1})^{2} \\
x^{2}=-1
\end{gathered}
$$

Factor the following:

$$
\begin{gathered}
x^{2}+3 \\
x^{2}+4 \\
x^{2}-5 \\
x^{2}-17
\end{gathered}
$$

No !!
 Cannot use the Inverse Property of Multiplication on Addends.

Addition and Subtraction mean:
Combine the terms into one term (if you can)
If you can't combine them (unlike terms) they still are connected to each other.
Put binomials into a parentheses. $\quad(x+7)$

$$
7(x+9)
$$

Simplifying Fractions

$$
\frac{84}{63} \text { Factor, factor, factor } \rightarrow \frac{2 * 42}{9 * 7} \rightarrow \frac{2 * 6 * 7}{3 * 3 * 7}
$$

$\rightarrow \frac{2 * 2 * \not 3 * 7}{37 * 3 * 77} \rightarrow \frac{4}{3}$
$\frac{(x+3)(x-4)(x+5)}{(x+5)(x+4)(x+3)}$

Simplifying Rational Expressions

 Factor, factor, factor!$$
\frac{x^{2}-4}{2 x-4} \rightarrow \frac{(x-2)(x+2)}{2(x-2)} \rightarrow \frac{(x+2)}{2}
$$

$$
\frac{2 x^{2}-8 x-24}{x^{2}-x-6}
$$

Multiply

$$
\begin{aligned}
& (x-3)\left(x^{2}+3 x+9\right. \\
& x^{3}-27
\end{aligned}
$$

There are NO x^{2} terms and NO ' x ' terms

	x	-3
x^{2}	x^{3}	$-3 x^{2}$
$3 x$	$3 x^{2}$	$-9 x$
9	$9 x$	-27
$0 x^{2}$	$0 x$	

The Difference of cubes: factors as the cubed root of each term multiplied by a $2^{\text {nd }}$ degree polynomial. $\quad x^{3}-1$
$(x-1)\left(a x^{2}+b x+c\right)$
$(x-1)\left(x^{2}+x+1\right)$

	x	-1
x^{2}	x^{3}	$-1 x^{2}$
$1 x$	$1 x^{2}$	$-1 x$
1	$1 x$	-1

The Sum of cubes: factors as the cubed root of each term multiplied by a $2^{\text {nd }}$ degree polynomial. $\quad 8 x^{3}+125$
$(2 x+5)\left(a x^{2}+b x+c\right)$
$0 x^{2^{2}} 0 x$
$(2 x+5)\left(4 x^{2}-10 x+25\right)$

