Math-1010 Lesson 3-5 The Logarithm Function

Finding the Inverse: exchange the locations of ' x ' and ' y ' in the equation then solve for ' y '.

$$
\begin{array}{cl}
f(x)=(x-2)^{2} & \sqrt{x}=\sqrt{(y-2)^{2}} \\
y=(x-2)^{2} & \pm \sqrt{x}=y-2 \\
x=(y-2)^{2} & \pm \sqrt{x}+2=y \\
& y=2 \pm \sqrt{x}
\end{array}
$$

Domain, Range, and Inverse Functions

Domain: The input values (that have corresponding outputs)

Range: The output values (that have corresponding inputs)

Inverse of a Function:
A function resulting from an "exchange" of the inputs and outputs.
$f(x)$: Domain, Range
$f^{-1}(x)$ Domain $=$ range of $f(x)$
Range = domain of $f(x)$

Exponential
Function

$f(x)=10^{x}$
Domain $=? \quad(-\infty, \infty)$
Range = ?
$(0, \infty)$
Horizontal asymptote $=$?

$$
y=0
$$

Domain = ?
$(0, \infty)$
Function

$$
f(x)=\log x
$$

Range $=? \quad(-\infty, \infty)$
Vertical asymptote
$=? \quad \mathrm{X}=0$

Logarand

$$
g(x)=3 \log _{\text {Logarand }} x
$$

Vertical Asymptote: The value of 'x' that makes the logarand equal to zero.

Vertical asymptote $=? \quad \mathrm{X}=0$

Evaluating Logs on your calculator

$$
\log 8=?
$$

$$
\log 0=?
$$

Push buttons:

error

$\ln 10=$?
Push buttons: (n) 10) $\quad 2.302585093$

Exponential

Form

Logarithm
Form
"base 2 to the $3^{\text {rd }}$ power is 8 "

$$
3^{x}=9
$$

3 to what power is 9 ?
"log base 2 of 8 is 3 "

$$
\log _{3} 9=x
$$

3 to what power is 9 ?

$$
x=2
$$

Exponential

Form

Logarithm
Form

$$
\begin{array}{ll}
5^{x}=25 & \log \square=\square \\
4^{x}=64 & \log _{5} 25=x \\
b^{x}=y \text { Why did they } & \log _{4} 64=x \\
\log _{b} y=x \\
9^{x}=81 & \log _{9} 81=x \\
10^{x}=1000 & \log _{10} 1000=x
\end{array}
$$

Your Turn:

Convert to logarithm form

$$
\begin{array}{ll}
\text { 1. } & 6^{x}=36 \\
\text { 2. } & 5^{x}=1 \\
\text { 3. } & 2^{x}=16 \\
\text { 4. } & 2^{5}=x \\
\text { 5. } & 3^{4}=x
\end{array}
$$

Convert to exponential form

$$
\begin{aligned}
& \log _{10} 100=x \\
& \log _{3} 27=x
\end{aligned}
$$

$$
\log _{9} 1=x
$$

$$
\log _{4} x=2
$$

$$
\log _{2} x=5
$$

Vocabulary

Common Logarithm: has a base of 10.

$$
\log _{10} 100=x
$$

We usually write it in this form: $\log 100=x$
Natural Logarithm: has a base of \underline{e}.
$\log _{e} 2.718=1$
We always write it in this form:
$\ln 2.718=1$

Your Turn:

What is the base?
11. $\log _{2} 8=x$
12. $\ln 5=x$
13. $\log 20=x$

Evaluating Logs on your calculator

$$
\log 8=?
$$

Push buttons:
(10g 8) \# 0.903089987
$\ln 10=$?
Push buttons:
(In 10) $\quad 2.302585093$

Estimate the value of the log:

$$
\log 8=? \quad \log 8=x \quad 10^{x}=8
$$

$$
\begin{aligned}
& x \approx 0.8 \\
& x \approx 0.9
\end{aligned}
$$

Find $\log 8$ on your calculator.
$\log 8=0.903$

Estimate the value of the log:

$$
\log 50=? \quad \log 50=x \quad 10^{x}=50
$$

$\begin{gathered} 10^{1} \\ \hline \end{gathered}$	10^{x}	10^{2}
	1	$\xrightarrow{\longrightarrow}$
10	50	100
$x \approx 1.5$		
$x \approx 1.6$		

Find $\log 50$ on your calculator. $\log 50=1.7$

Your Turn:

Estimate the value of the log:

14. $\log 8=? \quad \log 8=x \quad 10^{x}=8$
15. $\log 10=$?
16. $\ln 5=$?

Finding the Inverse $f^{-1}(x)=$?

$$
\begin{aligned}
& f(x)=2(5)^{x} \quad f^{-1}(x)=\log _{5}\left(\frac{x}{2}\right) \\
& x=2(5)^{y}
\end{aligned}
$$

$$
\frac{x}{2}=(5)^{y} \quad \begin{aligned}
& \text { Base: } 5 \\
& \quad \text { "A log is an exponent" }
\end{aligned}
$$

$$
y=\log _{5}\left(\frac{x}{2}\right)
$$

