Math-1010 Lesson 3-3 (Textbook 3.3 and 3.4) (National Debt and Population Growth

	TANK	"			
Year	Total National Debt	"this year's			
	as of 30 Sept (in	debt" ÷ "last			
	trillions of \$)	year's debt"			
2005	8.50	n/a			
2006	9.52	1.12			
2007	10.66	1.12			
2008	11.94	1.12			
2009	13.37	1.12			
2010	14.98	1.12			
2011	16.78	1.12			
<u>inear data</u> : $\frac{\Delta \text{ output}}{\Delta \text{ in mat}} = \text{constant}$					
<u>Linear data</u> : $\frac{\Delta \operatorname{suput}}{\Delta \operatorname{input}} = \operatorname{constant}$					
ponent	tial data: <u>output_{next}</u>	-= constant			

output_{previous}

Is the data linear or is it exponential?

How can you tell the difference between <u>linear data</u> and <u>exponential data</u>?

What is the growth factor?

 $\frac{\text{output}_{\text{next}}}{\text{output}_{\text{previous}}} = \text{growth factor}$

How would you change the input values so that the relation is easier to graph? Replace "year" with "years since 2005"

Graph the following data

Years since 2005	Total National Debt as of 30 Sept (in trillions of \$)	"this year's debt" ÷ "last year's debt"
0	8.50	n/a
1	9.52	1.12
2	10.66	1.12
3	11.94	1.12
4	11.37	1.12
5	14.98	1.12
6	16.78	1.12

 $\frac{\text{output}_{\text{next}}}{\text{output}_{\text{previous}}} = \text{constant}$

= growth factor =1.12

Does the following equation pass through the data? $D(t) = 1.12^{x}$ Why not?

The y-intercept for the equation is (0, 1) and the y-intercept for the data is (0, 8.5).

Complete the following table.

t	CALCULATION OF THE NATIONAL DEBT	EXPONENTIAL FORM	NATIONAL DEBT (in trillions of dollars)
0	8.50	8.50(1.12) ⁰	8.50
1	(8.50)1.12	$8.50(1.12)^{1}$	9.52
2	9.52(1.12)	$8.50(1.12)^2$	10.66
3	10.66(1.12)	$8.50(1.12)^3$	11.94

Use the pattern in the table to adjust the following equation so that it "fits" the data. $D(t) = 1.12^{x}$

$$D(t) = 8.50(1.12)^x$$

In general, what do we call the <u>coefficient</u> of the <u>exponential function</u>?

Vocabulary

Initial Value: (of the exponential) is the vertical stretch factor.

If in input is time ("stopwatch time") the <u>initial value</u> occurs when t = 0.

$$f(t) = 3(2)^{t}$$
 Domain: $x = [0, \infty)$
 $f(0) = 3(2)^{0} = ?$
 $f(0) = 3$

<u>General Form</u> of an "any base" exponential function:

$$f(x) = ab^x$$

Initial value of the function Growth factor

f(0) = ? = 3

y-intercept

$$f(x) = 3(b)^x$$

Exponential Data: what is the equation? $f(x) = ab^{x}$

Find the function for this data.

"g(x)" is exponential $\rightarrow g(x) = ab^x$

 \rightarrow growth factor = 3 b = 3

 \rightarrow initial value = 4 a = 4

$$g(x) = 4(3)^x$$

h(x)' is exponential $\rightarrow h(x) = ab^x$

$$\rightarrow$$
 growth factor = 1/4 $b = \frac{1}{4}$

 \rightarrow initial value = 8

 $h(x) = 8 \left(\frac{1}{4}\right)^x$

$$a = 8$$

$$h(x) \neq \left(\frac{8}{4}\right)^x \rightarrow \text{Why?}$$

Find h(x)

You buy a new car for \$22,000 (ouch). Unfortunately your car will <u>depreciate</u> by 30% each year. What will the car be worth in 4 years?

If it is depreciates 30% in 1 year, what percentage of the original amount is it worth?

70% of the original amount after one year

You deposit \$100 money into an account that pays 3.5% interest per year. How much money will be in the account at the end of the 1st year? A(1) = \$100 + \$100(0.035)**Original amount** There will be a (\$100) will still be small amount of in the account. growth(3% of \$100) Factor out the common factor \$100 A(1) = \$100(1 + 0.035) = \$100(1.035) $A(2) = \$100(1.035)^2$ $A(3) = \$100(1.035)^3$ A(t) =\$100(1.035)^t $A(t) = A_0(1+r)^t$

A bank pays 5% interest per year, and they pay you each month, what is the monthly interest rate?

0.05 per year
$$\rightarrow \frac{0.05}{12}$$
 per month $\rightarrow 0.0042$ per month

The exponential growth equation for money in a bank for account where the bank pays you more frequently than at the end of the year is: Annual Amount of \$\$ interest rate Initial value in the account <u>Years</u> after the deposit as a function $\underline{A(t)} = \underline{A_0}(1 + r/k)^{k*t}$ of time <u># of times the bank</u> pays you each year Values of "k" "<u>Compounding period</u>" \rightarrow the Words to look Κ number of times the bank pays for you each year. Annually 1 "A bank pays 3% per year 2 Semi-annually compounded monthly." Quarterly 4 12 $A(t) = A_0 (1 + 0.03/12)^{12*t}$ Monthly 365 Daily

You deposit \$100 money into an account that pays 3.5% interest per year. The interest is "compounded" monthly. How much money will be in the account at the end of the 5th year?

$$A(t) = A_0 (1 + r/k)^{k*t}$$

$$A(5) = 100 \left(1 + \frac{0.035}{12}\right)^{12*5}$$
$$A(5) = \$119.09$$

Interest paid at the end of each month

- $A(t) = A_0 (1+r)^t$
- $A(5) = 100(1 + 0.035)^{(5)}$
 - A(5) = \$118.77

Interest paid at the end of each year

You deposit \$200 money into an account that pays 5.5% interest per year. How much money will be in the account at the end of the 20th year?

$$A(t) = A_0 (1+r)^t$$
$$A(20) = \$200(1+0.055)^{(20)}$$

A(20) = \$583.55

You buy a car for \$18,500. It depreciates at 15% per year. What is the <u>value</u> of the car (what you could sell it for) after 7 years?

$$V(t) = V_0 (1 - r)^t$$

$$V(t) = 18,500(1 - 0.15)^{(t)}$$

$$V(t) = 18,500(0.85)^{(t)}$$

What is the growth factor? Is it "growth" or "decay"?

 $V(7) = 18,500(0.85)^{(7)}$

$$V(7) = $5930.68$$

The population of a town grows at 5%. In 1990 the population was 750. What will be the population if 2020?

$$P(t) = P_0 (1+r)^t$$
$$P(t) = 750(1.05)^{(t)}$$
$$P(30) = 750(1.05)^{(30)}$$

What is the growth factor? Is it "growth" or "decay"?

$$P(30) = 3241$$