Math-1010 Lesson 3-2

(Textbook Sections 3.1 and 3.2) The Exponential Function

What does the graph look like?

Why does $2^{-2} = 0.25$? $\left(\frac{2}{1}\right)^{-2} = \left(\frac{1}{2}\right)^{2} = \frac{1}{4} = 0.25$ Why does $2^{0} = 1$?

negative exponent property

zero exponent property

How fast does it grow? $f(x) = 2^x$ When the <u>integer</u> input value increases by 1 unit, the y-value becomes twice as big.

What do we call the number "2" in the original equation?

1) "Base" of the exponential.
2) "Growth Factor" of the exponential function.

Exponential Function $f(x) = 2^x$

Fill in the rest of the table:

X	2^x	У	
-5	2^{-5}	≈ 0.03	$\frac{1}{2^5} = \frac{1}{32}$
-10	2^{-10}	≈ 0.001	1/2 - 32
-15	2^{-15}	≈ 0.00003	$1/2^3 / 32$
-20	2^{-20}	≈ 0.000001	$\frac{72^{5} - 732}{1/2^{5}} = \frac{1}{32}$
-25	2^{-25}	≈ 0.0000003	

 \rightarrow What <u>conclusion</u> can you come to by looking at the <u>trend</u> in the <u>output values</u>?

Exponential Function $f(x) = 2^x$

Will the '<u>y' value ever reach zero</u> (on the left end of the graph)? Why not?

As the input value becomes a larger negative number,

 $2^{-5} \qquad 2^{-10} \qquad 2^{-15} \qquad 2^{-20}$ $\rightarrow \text{ denominator gets bigger}$ $\frac{1}{2^5} = \frac{1}{32} \qquad \frac{1}{2^{10}} = \frac{1}{1024} \qquad \frac{1}{2^{15}} \qquad \frac{1}{2^{20}}$

 \rightarrow decimal equivalent of the <u>fraction</u> gets <u>smaller</u>.

 ≈ 0.03 ≈ 0.001 ≈ 0.00003 ≈ 0.000001

 \rightarrow decimal equivalent of the of <u>fraction</u> approaches <u>zero</u> but NEVER reaches zero.

The denominator of a fraction can <u>never</u> make a fraction = 0.

Vocabulary

<u>Horizontal Asymptote</u>: a horizontal line the y-value of the graph approaches but never reaches.

What does the graph look like?

As the <u>integer input value</u> <u>increases</u> by a value of <u>one</u>, by what <u>factor</u> is the output value changing by?

What is the y-intercept?

$$f(x) = b^{x}$$
$$f(x) = (0.5)^{x}$$

Fill in the Table of values

Exponential Growth and Decay

$$f(x) = b^x$$

For what <u>interval of values of growth factor</u> 'b' b > 1 will result in <u>exponential growth</u> ?

For what <u>interval of values of growth factor</u> 'b' 0 < b < 1 will result in <u>exponential decay</u>?

Exponential Data: what is the equation?

$$f(x) = \left(\frac{1}{3}\right)^x$$

Exponential Data: what is the equation?

X	f(x)	What is the base of the exponential function?
-2	0.0625	y_{next}
-1	0.25	$base = \frac{y_{nrevious}}{y_{nrevious}}$
0	1) 4
1	4	$hase = \frac{16}{} = \frac{4}{} = \frac{1}{}$
2	16	4 1 0.25
3	64	The "growth factor" is the
4	256	base of the exponential.

$$f(x) = 4^x$$

Exponential Data: what is the equation?

In what portion of the table is it easier to find the growth factor?

When comparing the growth (or decay) between x = 0 and either x = -1 or x = 1

	t	A(t)	$A_1 = A_0 + r * A_0)$
	0	$A_0 = 5$) 1.1 $A_1 = A_0(1+r)$
	1	$A_1 = 5.5$	
	2		Amount (at $t = 0$) Rate of change
	3		5.5 = 5(1+r)
	4		<u>Rate of change = ?</u> $\frac{5.5}{5} = 1 + r$
<u>G</u>	browth fa	actor = ?	Rate of change = 0.1 $1.1 - 1 = r$
G	rowth fa	actor = (1)	+ r)

Growth factor = (1 + 0.1)

Growth factor = (1.1)

 $|A_2 = 6.05|$

t
 A(t)

$$A_3 = A_2 + r * A_2$$

 0
 $A_0 = 5$
 1.1
 $A_3 = A_2(1+r)$

 1
 $A_1 = 5.5$
 1.1
 $A_3 = A_2(1+r)$

 2
 $A_2 = 6.05$
 1.1
 Amount (at t = 0)

 3
 $A_3 = 6.655$
 1.1
 $A_3 = 6.05(1.1)$

 4
 $A_3 = A_0(1.1)^3$

$$A_3 = 6.655$$

t
 A(t)

$$A_4 = A_3 + r * A_3$$

 0
 $A_0 = 5$
 1.1
 $A_4 = A_3(1+r)$

 1
 $A_1 = 5.5$
 1.1
 $A_4 = A_3(1+r)$

 2
 $A_2 = 6.05$
 1.1
 Amount (at t = 0)
 Rate of change

 3
 $A_3 = 6.655$
 1.1
 $A_4 = 6.655(1.1)$

 4
 $A_4 = 7.3205$
 1.1
 $A_4 = A_0(1.1)^4$

$$A_3 = 7.3205$$

Exponential function

from x = 0 to x = 3? $\frac{\Delta y}{\Delta x} = \frac{7}{3}$

<u>Half-Life of Medicine</u>: After taking a dose of medicine, your body metabolizes the medicine and it decays away. The time it takes for the medicine in your body to decay to $\frac{1}{2}$ of its original value.

$$A(t) = A_0(\frac{1}{2})^2$$

Ao means the "original amount"

A(t) means the amount as a function of time (how much is in your body at any given time after t = 0).

<u>Half-Life of Medicine</u>: After taking a dose of medicine, your body metabolizes the medicine and it decays away. The <u>half-life</u> is the time it takes for the medicine in your body to decay to $\frac{1}{2}$ of its original value.

If a medicine has a half-life of 4 days, how much medicine will be in your body after: 4 days? 8 days? 16 days?

Build a table of values for this relation.

Number of days since 1 st dose	Number of ½ lives since 1 st dose	Fraction of medicine remaining in your body	
0	0	1 (100%)	1/2
4	1	1/2	/2
8	2	$\frac{1}{4}$	/2
16	4	$\frac{1}{8}$	1/2

You are injected with 5 ml of radioactive lodine for a thyroid scan. The half-life of the iodine in your blood is 40 hours. a) Build a table of values for this relation.

- b) What is the equation that models the amount of iodine in your blood as a function of time? $A(t) = A_0(0.5)^t$
- c) How much iodine will be in your blood in 10 days?
- d) Draw a graph of this scenario

Number of hours since 1 st dose	Number of ½ lives since 1 st dose	Fraction of medicine remaining in your body	
0	0	1 (100%)	
40	1	$\frac{1}{2}$	
80	2	1/4	
160	4	1/8] / / 2

 $10 * days = 6 * \frac{1}{2} lives$ $A(6) = A_0(0.5)^6$

 $A(6) = 0.015625A_0$

 $A(6) = 1.5625\% A_0$

 $10 * days * \frac{24 * hrs}{1 * day} * \frac{1 * \frac{1}{2} life}{40 * hrs}$

A = amount (% of original) $t = time (number of \frac{1}{2} lives)$

<u>Comparing Rates of Growth</u>: How would you figure this out? Which function grows the fastest?

Table of values?

$$f(x) = 2^x$$

$$g(x) = x^2$$

$$h(x) = x^3$$

x	h(x)
1	1
2	8
3	27
4	64

<u>Comparing Rates of Growth</u>: How would you figure this out? Which function grows the fastest? Graph?

