Math-1010 Lesson 3-2

(Textbook Sections 3.1 and 3.2) The Exponential Function

What does the graph look like?
$f(x)=2^{x}$
Fill in the rest of the table.

x	2^{x}	y
-2	2^{-2}	0.25
-1	2^{-1}	0.5
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4

Why does $2^{-2}=0.25$?
$\left(\frac{2}{1}\right)^{-2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}=0.25$
negative exponent property

Why does $\quad 2^{0}=1 \quad$?
zero exponent property

How fast does it grow? $\quad f(x)=2^{x}$

When the integer input value increases by 1 unit, the y-value becomes twice as big.

x	2^{x}	y
-2	2^{-2}	0.25
-1	2^{-1}	0.5
0	2^{0}	1
1	2^{1}	2
2	2^{2}	4

What do we call the number " 2 " in the original equation?

1) "Base" of the exponential.

What is the y-intercept?

$$
f(0)=2^{0}=1
$$

2) "Growth Factor" of the exponential function.

Exponential Function $f(x)=2^{x}$

Fill in the rest of the table:

x	2^{x}	y
-5	2^{-5}	≈ 0.03
-10	2^{-10}	≈ 0.001
-15	2^{-15}	≈ 0.00003
-20	2^{-20}	≈ 0.000001
-25	2^{-25}	≈ 0.00000003

$$
\left\{\begin{array}{l}
1 / 2^{5}=1 / 32 \\
1 / 2^{5}=1 / 32 \\
1 / 2^{5}=1 / 32 \\
1 / 2^{5}=1 / 32
\end{array}\right.
$$

\rightarrow What conclusion can you come to by looking at the trend in the output values?

Exponential Function $f(x)=2^{x}$

Will the ' y ' value ever reach zero (on the left end of the graph)? Why not?
As the input value becomes a larger negative number,

$$
2^{-5}
$$

$$
2^{-10}
$$

$$
2^{-15}
$$

$$
2^{-20}
$$

\rightarrow denominator gets bigger

$$
1 / 2^{5}=1 / 32 \quad 1 / 2^{10}=\frac{1}{1024} \quad 1 / 2^{15} \quad 1 / 2^{20}
$$

\rightarrow decimal equivalent of the fraction gets smaller.

$$
\approx 0.03 \approx 0.001 \quad \approx 0.00003 \approx 0.000001
$$

\rightarrow decimal equivalent of the of fraction approaches zero but NEVER reaches zero.

The denominator of a fraction can never make a fraction $=0$.

Vocabulary

Horizontal Asymptote: a horizontal line the y-value of the graph approaches but never reaches.
$f(x)=2^{x}$

General Form of an

"any base" exponential function:

$$
f(x)=b^{x}
$$

Domain $=? \quad x=(-\infty, \infty)$
base of the exponential range $=$? $\quad y=(0, \infty)$
y-intercept $=? \quad f(0)=1$
Growth factor = ? b, the base of the exponential

What does the graph look like?

As the integer input value increases by a value of one, by what factor is the output value changing by?

What is the y-intercept?

$$
\begin{gathered}
f(x)=b^{x} \\
f(x)=(0.5)^{x}
\end{gathered}
$$

Fill in the Table of values

x	$(0.5)^{x}$	$f(x)$
-2	$(0.5)^{-2}$	4
-1	$(0.5)^{-1}$	2
0	$(0.5)^{0}$	1
1	$(0.5)^{1}$	0.5
2	$(0.5)^{2}$	0.25
3	$(0.5)^{3}$	$1 / 2$
4	0.125	$1 / 2$
10.5$)^{4}$	0.0625	$1 / 2$

Exponential Growth and Decay

$$
f(x)=b^{x}
$$

For what interval of values of growth factor ' b ' will result in exponential growth ?

For what interval of values of growth factor 'b' $0<b<1$ will result in exponential decay ?

Exponential Data: what is the equation?

X	f(x)	\underline{x}-values increment by one each time.
-2	9	y-values increment) $1 / 3$ by the same factor each time.
-1	3) $1 / 3$ This number is the "growth factor"
0	1	
1	0.333	"growth factor": the "base" of the exponential.
2	0.111	Calculate the base: \quad base $=\underline{y_{\text {next }}}$
3	0.037	$y_{\text {previous }}$
4	0.0124	$3 \quad 1 \quad 0.3333$
		base $=\frac{7}{9}=\frac{1}{3}=\frac{1}{1}$
		$f(x)=(1 / 3)^{x}$

Exponential Data: what is the equation?

x	$\mathrm{f}(\mathrm{x})$	What is the base of the exponential function?	
-2	0.0625		
-1	0.25	base $=\frac{y_{\text {next }}}{y_{\text {previous }}}$	
0	1		
1	4	4	
2	16	4	base $=\frac{16}{4}=\frac{4}{1}=\frac{1}{0.25}$
3	64		
4	256		The "growth factor" is the
base of the exponential.			

$$
f(x)=4^{x}
$$

Exponential Data: what is the equation?

In what portion of the table is it easier to find the growth factor?
When comparing the growth (or decay) between $\mathrm{x}=0$ and either $\mathrm{x}=-1$ or $\mathrm{x}=1$

The "amount" as a function of time (since the $1^{\text {st }}$ data point)

t	$\mathrm{A}(\mathrm{t})$
0	$A_{0}=5$
1	$A_{1}=5.5$

$$
A_{1}=A_{0}+r * A_{0}
$$

Amount (at $\mathrm{t}=0$) Rate of change
$5.5=5(1+r)$

Rate of change $=? \quad \frac{5.5}{5}=1+r$
Growth factor $=$?
Rate of change $=0.1$
$1.1-1=r$
Growth factor $=(1+r)$
Growth factor $=(1+0.1)$
Growth factor $=(1.1)$

The "amount" as a function of time (since the $1^{\text {st }}$ data point)

The "amount" as a function of time (since the $1^{\text {st }}$ data point)

t	$\mathrm{A}(\mathrm{t})$	
0	$A_{0}=5$	
1	$A_{1}=5.5$	$\left.A_{3}=A_{2}+r * A_{2}\right)$ 2$A_{2}=6.05$
3	$A_{3}=6.655$	$A_{3}=A_{2}(1+r)$
4	1.1	Amount (at $\mathrm{t}=0$ Rate of change
4	$A_{3}=6.05(1.1)$	
$A_{3}=A_{0}(1.1)^{3}$		
	$A_{3}=6.655$	

The "amount" as a function of time (since the $1^{\text {st }}$ data point)

t	$\mathrm{A}(\mathrm{t})$		
0	$A_{0}=5$		
1	$A_{1}=5.5$	$\left.A_{4}=A_{3}+r * A_{3}\right)$ 2	1.1 $A_{2}=6.05$ $A_{4}=A_{3}(1+r)$ 3
$A_{3}=6.655$	1.1	Amount (at t=0) Rate of change	
4	$A_{4}=7.3205$	$A_{4}=6.655(1.1)$	

Exponential function

$$
f(x)=(2)^{x}
$$

Domain? $D: x=(-\infty, \infty)$
Range? $\quad R: y=(0, \infty)$

Half-Life of Medicine: After taking a dose of medicine, your body metabolizes the medicine and it decays away. The time it takes for the medicine in your body to decay to $1 / 2$ of its original value.

$$
A(t)=A_{0}(1 / 2)^{t}
$$

A_{\circ} means the "original amount"
$A(t)$ means the amount as a function of time (how much is in your body at any given time after $t=0$).

Half-Life of Medicine: After taking a dose of medicine, your body metabolizes the medicine and it decays away. The half-life is the time it takes for the medicine in your body to decay to $1 / 2$ of its original value.
If a medicine has a half-life of 4 days, how much medicine will be in your body after: 4 days? 8 days? 16 days?

Build a table of values for this relation.

Number of days since $1^{\text {st }}$ dose	Number of $1 / 2$ lives since $1^{\text {st }}$ dose	Fraction of medicine remaining in your body
0	0	$1(100 \%)$
4	1	$1 / 2$
8	2	$1 / 4$
16	4	$1 / 2$
$1 / 2$		
$1 / 2$		
$1 / 2$		

You are injected with 5 ml of radioactive Iodine for a thyroid scan. The half-life of the iodine in your blood is 40 hours.
a) Build a table of values for this relation.
b) What is the equation that models the amount of iodine in your blood as a function of time? $\quad A(t)=A_{0}(0.5)^{t}$
c) How much iodine will be in your blood in 10 days?
d) Draw a graph of this scenario

$$
\begin{aligned}
& 10 * \text { days }=6 * \frac{1}{2} \text { lives } \\
& A(6)=A_{0}(0.5)^{6} \\
& A(6)=0.015625 A_{0} \\
& A(6)=1.5625 \% A_{0}
\end{aligned}
$$

$A=\operatorname{amount}$ (\% of original)
$t=$ time (number of $\frac{1}{2}$ lives)

$$
10 * d d y s * \frac{24 * h \not t s}{1 * d g y} * \frac{1 * \frac{1}{2} \text { life }}{40 * h / s}
$$

Comparing Rates of Growth: How would you figure this out? Which function grows the fastest?

Table of values?
$f(x)=2^{x}$
$g(x)=x^{2}$
$h(x)=x^{3}$

x	$f(x)$
1	2
2	4
3	8
4	16

x	$g(x)$
1	1
2	4
3	8
4	16

x	$\mathrm{h}(\mathrm{x})$
1	1
2	8
3	27
4	64

Comparing Rates of Growth:
Which function grows the fastest?

How would you figure this out?

Graph?
$f(x)=3^{x}$
$g(x)=x^{2}$
$h(x)=x^{3}$

$k(x)=x^{4}$

$y=[-10,100]$

$y=[-10,100]$

$y=[-10,1000]$

