$$
\begin{aligned}
& \text { Math } 1010 \\
& \text { Lesson 3-1 }
\end{aligned}
$$

Function Composition And Introduction to Inverse Functions

$$
f(x)=x^{2}-3 x+2 \quad \rightarrow \mathrm{f}(-2)=?
$$

Means: wherever you see an ' x ' in the function, replace it with a ' -2 '.

1. Replace the ' x ' with a set of parentheses.

$$
f(x)=()^{2}-3()+2
$$

2. Put the input value ' -2 ' into the parentheses.

$$
f(x)=(-2)^{2}-3(-2)+2
$$

3. Find the output value.

$$
f(-2)=12
$$

Find the outputs

$$
\begin{gathered}
f(x)=2 x+1 \\
f(2)=5 \\
f(3)=7 \\
f(x-1)=2 x-1 \\
f(3 x)=6 x+1
\end{gathered}
$$

If your input is an expression instead of a number: replace ' x ' with parentheses and "plug in" the expression.

Find the outputs $\quad f(x)=x^{2}+1$

$$
\begin{aligned}
& f(2)=? \quad=5 \\
& f\left(x^{3}\right)=? \quad=x^{6}+1 \\
& f(x+2)=? \quad=(x+2)^{2}+1 \quad=x^{2}+4 x+5 \\
& f(-2 x+3)=? \quad=(-2 x+3)^{2}+1 \\
& \\
& \quad=4 x^{2}-12 x+10
\end{aligned}
$$

Compositions of Functions

$\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ and $\quad g(x)=x^{2}$
Let's use $\mathrm{f}(\mathrm{x})$ as the input to $\mathrm{g}(\mathrm{x}) \quad g(f(x))=$?

$$
\begin{array}{cl}
g(. .)=(\ldots)^{2} & \begin{array}{l}
\text { 1. Replace the ' } x \text { ' with } \\
\text { a set of parentheses. }
\end{array} \\
g(3 x)=(3 x)^{2} & \text { 2. Put the input value " } 3 x \text { ' } \\
\text { into the parenthes. }
\end{array}
$$

$g(f(x))=9 x^{2} \quad$ 3. Find the output value.

Compositions of Functions

$$
\begin{array}{ll}
f(x)=2 \mathrm{x}+3 \text { and } & g(x)=x^{2} \\
\mathrm{f}(\mathrm{~g}(\mathrm{x}))=? & \text { 1. The input value to } \mathrm{f}(\mathrm{x}) \text { is } \mathrm{g}(\mathrm{x}) . \\
f(. .)=2(. .)+3 & \begin{array}{l}
\text { 2. Replace the ' } \mathrm{x} \text { ' in } \mathrm{f}(\mathrm{x}) \text { with } \\
\text { a set of parentheses. }
\end{array} \\
f\left(x^{2}\right)=2\left(x^{2}\right)+3 & \begin{array}{l}
\text { 3. Put the input value }(g(x)) \\
\text { into the parentheses. }
\end{array} \\
f(g(x))=2 x^{2}+3 & \text { 4. Find the output value. }
\end{array}
$$

Composition of Functions

$$
\begin{aligned}
& f(x)=2 x+1 \\
& g(x)=3 x+2 \\
& h(x)=x+5 \\
& f(g(x))=? \quad=2(\quad)+1=2(3 x+2)+1 \\
& h(g(x))=? \quad=(\quad)+5=(3 x+2)+5 \\
& h(f(x))=? \quad=(\quad)+5=(2 x+1)+5 \\
& g(h(x))=? \quad=3(\quad)+2=3(x+5)+2 \\
& f(f(x))=? \quad=2(\quad)+1=2(2 \mathrm{x}+1)+1
\end{aligned}
$$

Compositions of functions. $\quad f(x)=3 x \quad g(x)=x^{2}$

$$
\begin{aligned}
& f(g(4)) \\
& g(1)=()^{2} \\
& f(g(x))=3(g(x))=3 x^{2} \\
& f(g(4))=3(g(4))=3(4)^{2}=48
\end{aligned}
$$

$$
\begin{gathered}
g(x)=x^{3}-1 \quad f(x)=5 x+2 \\
g(f(2))=? \\
f(g(-1))=? \\
f(f(3))=?
\end{gathered}
$$

Vocabulary

Inverse Relation: A relation that interchanges the input and output values of the original relation.

Relation: $\quad(-2,5),(5,6),(-2,6),(7,6)$

Inverse Relation: $\quad(5,-2),(6,5),(6,-2),(6,7)$

Find the inverse of: $f(x)=4 x+2 \quad$ Exchange ' x ' and ' y '

$$
x=4 y+2 \quad \text { This } \underline{\text { IS }} \text { the inverse function }
$$ (written as: "x as a function of y ") Rewrite it so that it is written as: " y as a function of x ") subtract '2' (left and right)

$$
x-2=4 y \quad \text { Divide (all of the) left and right by } 4
$$

$$
\frac{x}{4}-\frac{2}{4}=\frac{4 y}{4} \quad \text { Reduce the fractions }
$$

$$
\frac{x}{4}-\frac{1}{2}=y
$$

Rearrange into "slope intercept form"

$$
y=\frac{x}{4}-\frac{1}{2}
$$

This is the inverse of: $y=4 x+2$

$$
f(x)=\sqrt{x-2} \quad f^{-1}(x)=?
$$

Exchange ' x ' and ' y ' in the original relation.

$$
x=\sqrt{y-2}
$$

This IS the inverse function (written as: "x as a function of y ")
Rewrite it so that it is written as: " y as a function of x ")
$(x)^{2}=(\sqrt{y-2})^{2} \quad x^{2}=y-2 \quad y=x^{2}+2$

Why do we only graph the right side of the parabola?
Since the $x-y$ pairs of SQRT are all positive, then the $x-y$ pairs of the inverse of the SQRT (square function) will be positive.

Tell me everything you know about inverse relations.
When both are graphed on the same axes they are:
reflections of each other across the line $y=x$
If both are given as $x-y$ pairs:
the $x-y$ values are reversed.
If one relation "fails" the horizontal line test:
Its inverse is not a function.
When the two relations are "composed" the output is:
' x '

Function Notation: "the inverse of $\mathrm{f}(\mathrm{x})$ "
$f(x) \quad f^{-1}(x)$
$f^{-1}(x)$ means "the inverse of $\mathrm{f}(\mathrm{x})$ "
Do not confuse this notation with the negative exponent property:

$$
2^{-1}=\frac{1}{2^{1}}
$$

Negative exponent on a number or an expression means the reciprocal of the number.

The inverse of a function means "exchange ' x ' and ' y ' (then solve for ' y ')."
$\mathrm{f}(\mathrm{x})=\mathrm{x}-2 \quad f^{-1}(x)=? \quad$ Exchange ' x ' and ' y '
There's no " y " !!! Remember: $y=f(x) \rightarrow \quad y=x-2$
$x=y-2 \quad$ This IS the inverse function
(written as: " x as a function of y ")
Rewrite it so that it is written as: " y as a function of x ")
Add '2' (left and right)
$x+2=y \quad$ Rearrange into "slope intercept form"
$y=x+2 \quad$ This is the inverse of: $y=x-2$

$$
\begin{array}{cccc}
h(x): & (-3,5), & (5,6), & (-2,7), \\
h(5)=? & =6 & h(-2)=? & =7
\end{array}
$$

You must determine the $x-y$ values
$h^{-1}(7)=?=-2$ of the inverse relation before you can determine the output value.

$$
h^{-1}(x):(5,-3),(6,5),(7,-2),(5,8)
$$

Is the inverse of $h(x)$ a function? no
If the inverse of $h(x)$ is not a function, we say that $h(x)$ does NOT have an inverse (that is a function).
$h(x): \quad(-3,5),(5,6),(-2,7),(9,8)$

$$
h^{-1}(x):(5,-3),(6,5),(7,-2),(8,9)
$$

If the inverse of $h(x)$ is not a function, we say that $h(x)$ does NOT have an inverse (that is a function).

$$
\begin{aligned}
& h^{-1}(5)=?=-3 \\
& h\left(h^{-1}(5)\right)=?=h(-3) \quad=5
\end{aligned}
$$

The input to " h " is the output of $h^{-1}(5)$

$$
h\left(h^{-1}(7)\right)=?=h(-2)=7
$$

The input to " h " is the output of $h^{-1}(7)$

If you have the graph of a relation; how can you tell if the relation is a function?

Vertical Line Test if the line intersects the graph more than once, it is NOT a function.

If you have a graph; how can you tell if the inverse of the graphed function is also a function?
$f(x)=x^{2}$

Horizontal Line Test: if the line intersects the graph more than once, then the
Inverse of the function is NOT a function.

$$
\begin{aligned}
& f(x)=x^{2} \quad \begin{array}{l}
\text { f1 } \\
f^{-1}(x)=?
\end{array} \\
& x=y^{2} \longrightarrow y=? ? \quad y= \pm \sqrt{x} \\
& x=(? ?)^{2} \\
& x=(\sqrt{x})^{2} \quad x=(-\sqrt{x})^{2}
\end{aligned}
$$

Is the inverse of $f(x)$ a function?

Function A: heating by 10 degrees
What is the inverse of this function?
"Cooling something down by 10 degrees"
Function B: cooling by 10 degrees
The temperature of a bowl of soup is 100 degrees.
The temperature of a bowl of soup is 100 degrees. Apply function A then function B (in sequence) to the bowl of soup. What is the final temperature of the soup?

Temperature $=100+10-10=100$

Composition of inverse functions

Function A and Function B are inverses of each other.
Function A: "does something" to the input.
Function B: "undoes whatever function A did to the input.
27
Function A "does something" to input value 2

Function B "undoes (whatever A did) to the input value 2

What is the output of function B?

If you compose a function with its inverse, the output will be the same as the input.

$$
\begin{array}{ll}
f(x)=\sqrt{x} & \\
g(x)=x^{2} & \begin{array}{l}
\text { "A Function "undoes" } \\
\text { whatever its inverse }
\end{array} \\
f(g(x))=\sqrt{x^{2}} & \begin{array}{l}
\text { "did" to the input value". }
\end{array} \\
f(g(x))=x &
\end{array}
$$

A salesman receives a weekly salary of $\$ 500$ plus a 2% commission on his gross sales.

Determine a function, f, for a sales representative's weekly gross pay, P (before taxes), as a function of S, his weekly sales in dollars, $P=f(S)$.

$$
P=f(S)=500+0.02 s \quad \text { Is this correct? }
$$

NO. What's wrong?

$$
P=f(S)=500+0.02 S \quad \text { Is this correct? }
$$

YES. The silly MathXLforSchool.com program is case sensitive!

